Bart_van_der_Wolf
pro member
Hi folks,
It's a rare occasion that I'll recommend a read of a thread on an other (especially the DPR) forum. However, this thread does currently offer a nice view/development (so far) on a subject, diffraction, that has had my attention for quite a while already.
Diffraction is predominantly caused by our aperture settings. When light is forced down a small physical restraint/aperture, the light will 'diffract' around the edges of the aperture blades (especially noticable if the blades do not provide a perfectly circular edge).
For reasons that will be disclosed in future threads, I've (a while ago already) produced a chart that shows theoretical limitations for several camera sensor pitch dimensions:
The indications from this chart, translate quite well to some of the findings of the referenced article (within that article's margins of visual judgement accuracy), as they do to my personal observations on various sensor/lens/sensor-array combinations.
My basic premise is that when the diffraction blur diameter (first minimum (= zero) of the 'Airy disc' pattern) for the (most important for visual acuity) green wavelengths exceeds 1.5x the sensel pitch, there will be a visually significant impact on resolution. One could quibble if the lower boundary is at 1.5x or 2x the diffraction diameter, but that also depends on the Anti-aliasing filter used in the specific sensor designs at hand.
Bart
It's a rare occasion that I'll recommend a read of a thread on an other (especially the DPR) forum. However, this thread does currently offer a nice view/development (so far) on a subject, diffraction, that has had my attention for quite a while already.
Diffraction is predominantly caused by our aperture settings. When light is forced down a small physical restraint/aperture, the light will 'diffract' around the edges of the aperture blades (especially noticable if the blades do not provide a perfectly circular edge).
For reasons that will be disclosed in future threads, I've (a while ago already) produced a chart that shows theoretical limitations for several camera sensor pitch dimensions:

The indications from this chart, translate quite well to some of the findings of the referenced article (within that article's margins of visual judgement accuracy), as they do to my personal observations on various sensor/lens/sensor-array combinations.
My basic premise is that when the diffraction blur diameter (first minimum (= zero) of the 'Airy disc' pattern) for the (most important for visual acuity) green wavelengths exceeds 1.5x the sensel pitch, there will be a visually significant impact on resolution. One could quibble if the lower boundary is at 1.5x or 2x the diffraction diameter, but that also depends on the Anti-aliasing filter used in the specific sensor designs at hand.
Bart